PREFACE

The technology of hermeticity addresses the transfer of fluids in and out of sealed enclosures. This technology is based on physics and chemistry, and (like many such technologies) is difficult to grasp when the exposure is brief or infrequent. One's first exposure to this technology usually involves an application related problem. The understanding of, and particularly the solution to, the problem requires a considerable specific background. Not having such a background, the physical concept of the problem is just out of one's grasp and its solution is nowhere in sight. Subsequent exposure to this technology only helps a little, as the background is still missing and the new application is often slightly different.

The purpose of this monograph is to provide the necessary background and problem solving examples, so that packaging engineers and other specialists can apply this knowledge to solving their problems. Ninety nine problems and their solutions are presented. These problems are representative of the type of problems occurring in industry. Many of the included problems are those that the author has experienced.

The technology of hermeticity is an offshoot from vacuum science. Vacuum science has a long history, going back to two Italians: Gasparo Berti in 1640, and Evangelista Torricelli in 1644. During the next three hundred and some years, scientists have tried to produce better and better vacuums. They realized that the degree of vacuum achieved, not only depends upon how much and how fast the gas can be removed from the vessel, but also upon the amount and rate of gas leaking into the vessel. This lack of an hermetic vessel eventually led to the technology of hermeticity.

One method of finding leaks in a vacuum system was to connect the system to a mass spectrometer which was tuned to the gas; helium. Helium was selected because the amount of helium in the atmosphere is only 1 part in 200,000 (the rate of its diffusion through a leak is greater than any other gas except hydrogen), and that no other gas can be mistaken for helium by a mass spectrometer. Helium was then sprayed at various parts of the system and if there was a leak, the mass spectrometer would so indicate. This technique, slightly modified, would eventually be used to detect leaks in sealed packages when they contained helium.

The leak testing of sealed packages, when the initial atmosphere in the enclosure had some helium, became a common practice by the early nineteen sixties. In 1965 D. A. Howl and C. A. Mann reported on a leak testing method for enclosures which were not sealed in an atmosphere containing helium. This new method forced helium under pressure through the leakage path into the enclosure. A helium mass spectrometer then detected the helium escaping the enclosure. Subsequently, MIL-STD 883 adopted a leak test method based on this work.

Bibliographies at the end of chapters will lead the reader to areas beyond the present scope of this monograph.

Baltimore, Maryland
Hal Greenhouse
November, 1999

ABOUT THE AUTHOR

Hal Greenhouse received his B.S. in chemistry, and M.S. in physical chemistry from The Ohio State University in 1948 and 1951 respectively. In 1959, he began research and development in hybrid microcircuit technology at the Bendix Radio Division of the Bendix Aviation Corporation in Baltimore, Maryland. His career with Bendix started with the development of thin film technology for use in hybrid microcircuits, including the development of conductors, capacitors and resistor systems. In 1967, he transferred his efforts to the development of thick film technology and by 1980 a high reliability thick film hybrid microcircuit facility was built. The facility was based on processes developed by the author and his colleagues. He was the lead designer of over a dozen high reliability hybrid microcircuits for a missile system and he has design over 100 hybrid microcircuits and multi chip modules.

The author has published 19 papers and 5 patents, one of which is basic and as been issued in over 20 countries. He is a member of IMAPS, IEEE and the Society of Sigma XI. He has also been a member of the Optical Society of America, the American Vacuum Society, the American Crystallographic Society, the American Ceramic Society, and the Electrochemical Society.
7.0 LEAK RATE LIMITS ARE TOO LENIENT
8.0 BACKFILLING THE PACKAGE WITH HELIUM
9.0 BOMBING AFTER BACKFILLING
10.0 PROBLEMS AND THEIR SOLUTIONS
REFERENCES

7 Fine Leak Measurements Using a Helium Leak Detector
1.0 PRINCIPLE OF OPERATION
2.0 DEFINITIONS
3.0 CALIBRATION USING A STANDARD LEAK
4.0 MEASUREMENT ERRORS, NOT INCLUDING BACKGROUND ERRORS
5.0 BACKGROUND ERRORS
6.0 ERRORS DUE TO HELIUM ON THE EXTERNAL SURFACE OF THE PACKAGE
7.0 MINIMUM DETECTABLE LEAK (MDL)
8.0 CORRELATION OF STANDARD LEAKS
9.0 LOCATING LEAKS IN PACKAGES
10.0 PROBLEMS AND THEIR SOLUTIONS
REFERENCES

8 Gross Leaks
1.0 INTRODUCTION
2.0 FORCING A LIQUID INTO A PACKAGE
3.0 FLUOROCARBON VAPOR EXITING A PACKAGE
4.0 THE BUBBLE TEST
5.0 THE VAPOR DETECTION TEST
6.0 THE WEIGHT GAIN TEST
7.0 OPTICAL LEAK TEST
8.0 PENETRANT DYE TEST
9.0 FLUOROCARBONS FROM A RESIDUAL GAS ANALYSIS
10.0 QUANTITATIVE COMPARISON OF GROSS LEAK TEST METHODS
11.0 PROBLEMS AND THEIR SOLUTIONS
REFERENCES

9 The Permeation of Gases Through Solids
1.0 DESCRIPTION OF THE PERMEATION PROCESS
2.0 EFFECT OF TEMPERATURE ON PERMEATION
3.0 TREATING PERMEATION AS A LEAK RATE
4.0 WATER VAPOR PASSING THROUGH PLASTICS
5.0 PROBLEMS AND THEIR SOLUTIONS
REFERENCES

10 Residual Gas Analysis (RGA)
1.0 DESCRIPTION OF THE TEST
2.0 WHAT THE TEST MEASURES
3.0 CALCULATION OF LEAK RATES FROM RGA DATA
4.0 INTERPRETATION OF RGA DATA
5.0 THE QUALIFICATION OF SMALL PACKAGES USING RGA
6.0 PROBLEMS AND THEIR SOLUTIONS
REFERENCES

Appendix
1.0 LIST OF SYMBOLS AND DIMENSIONS
2.0 DIMENSIONS
3.0 CONVERSION FACTORS FOR PRESSURE/VACUUM

Acknowledgment

Index
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute temperature</td>
<td>2</td>
</tr>
<tr>
<td>Absolute total pressure</td>
<td>41</td>
</tr>
<tr>
<td>Absolute water vapor pressure</td>
<td>346</td>
</tr>
<tr>
<td>Absorption</td>
<td></td>
</tr>
<tr>
<td>gas in glass</td>
<td>342</td>
</tr>
<tr>
<td>infrared</td>
<td>291</td>
</tr>
<tr>
<td>Adsorbed helium</td>
<td>253</td>
</tr>
<tr>
<td>Adsorption</td>
<td>333</td>
</tr>
<tr>
<td>Affinity</td>
<td>333</td>
</tr>
<tr>
<td>Aging</td>
<td>247</td>
</tr>
<tr>
<td>Air leak rate</td>
<td>198</td>
</tr>
<tr>
<td>Altemose, V. O.</td>
<td>352</td>
</tr>
<tr>
<td>Ambient temperature</td>
<td>43, 342</td>
</tr>
<tr>
<td>Ammonia, in hybrid</td>
<td>374</td>
</tr>
<tr>
<td>Aqueous solution</td>
<td>137</td>
</tr>
<tr>
<td>Argon impurity</td>
<td>376</td>
</tr>
<tr>
<td>Aspect ratio</td>
<td>30, 108, 119</td>
</tr>
<tr>
<td>Atmospheres</td>
<td></td>
</tr>
<tr>
<td>calculated</td>
<td>340</td>
</tr>
<tr>
<td>in package</td>
<td>337, 340, 359</td>
</tr>
<tr>
<td>Attenuating system</td>
<td>245</td>
</tr>
<tr>
<td>Automatic electronic balance</td>
<td>295</td>
</tr>
<tr>
<td>Avogadro's number</td>
<td>4, 7, 10</td>
</tr>
<tr>
<td>Backfill</td>
<td>106, 114, 242, 251, 252, 375, 394</td>
</tr>
<tr>
<td>Backfilling</td>
<td>193, 216</td>
</tr>
<tr>
<td>advantages</td>
<td>215</td>
</tr>
<tr>
<td>disadvantage</td>
<td>216</td>
</tr>
<tr>
<td>helium</td>
<td>114, 201, 215, 217, 221</td>
</tr>
<tr>
<td>Background</td>
<td>248, 250, 257, 259, 260, 261</td>
</tr>
<tr>
<td>canceling</td>
<td>249</td>
</tr>
<tr>
<td>drift</td>
<td>257</td>
</tr>
<tr>
<td>errors</td>
<td>248</td>
</tr>
<tr>
<td>helium</td>
<td>250</td>
</tr>
<tr>
<td>injected helium</td>
<td>246</td>
</tr>
<tr>
<td>non-helium</td>
<td>246, 250</td>
</tr>
<tr>
<td>signal</td>
<td>250</td>
</tr>
<tr>
<td>value</td>
<td>248</td>
</tr>
<tr>
<td>Barrer, N.</td>
<td>352</td>
</tr>
<tr>
<td>Bernoulli</td>
<td>1</td>
</tr>
<tr>
<td>Boltzmann constant</td>
<td>6, 9</td>
</tr>
<tr>
<td>Bomb</td>
<td>97, 196, 197</td>
</tr>
<tr>
<td>Bombing</td>
<td>19, 92, 215, 217, 235, 251, 253, 291</td>
</tr>
<tr>
<td>after backfilling</td>
<td>217</td>
</tr>
<tr>
<td>leak test</td>
<td>217</td>
</tr>
<tr>
<td>pressure</td>
<td>199, 206, 211, 217, 251, 295</td>
</tr>
<tr>
<td>time</td>
<td>199, 206</td>
</tr>
<tr>
<td>Bubble leak test</td>
<td>315</td>
</tr>
<tr>
<td>Bubble test</td>
<td>288</td>
</tr>
<tr>
<td>Bum in</td>
<td>74, 155</td>
</tr>
<tr>
<td>Calibration of a leak detector</td>
<td>246, 249</td>
</tr>
<tr>
<td>Catalyst</td>
<td>157</td>
</tr>
<tr>
<td>Ceramic package</td>
<td>309</td>
</tr>
<tr>
<td>Chamber</td>
<td></td>
</tr>
<tr>
<td>sealing</td>
<td>151</td>
</tr>
<tr>
<td>vacuum bake</td>
<td>151</td>
</tr>
<tr>
<td>Change in leak rate due to temperature</td>
<td>247</td>
</tr>
<tr>
<td>Change in package weight</td>
<td>269</td>
</tr>
<tr>
<td>Change in pressure</td>
<td>302, 340</td>
</tr>
<tr>
<td>Charles's Law</td>
<td>4</td>
</tr>
<tr>
<td>Chemical affinity</td>
<td>333</td>
</tr>
<tr>
<td>Class K devices</td>
<td>215</td>
</tr>
<tr>
<td>Clausing Correction Factor</td>
<td>27</td>
</tr>
<tr>
<td>Composite</td>
<td>27</td>
</tr>
<tr>
<td>Composite equation cylinder</td>
<td>27</td>
</tr>
<tr>
<td>Composition of dry air</td>
<td>93</td>
</tr>
<tr>
<td>Conditions</td>
<td></td>
</tr>
<tr>
<td>fixed</td>
<td>199</td>
</tr>
<tr>
<td>Method</td>
<td>1014 199</td>
</tr>
<tr>
<td>Conductance</td>
<td>16, 31, 54, 82, 83, 271</td>
</tr>
<tr>
<td>channel</td>
<td>16, 33</td>
</tr>
<tr>
<td>circular orifice</td>
<td>29</td>
</tr>
<tr>
<td>cylinder</td>
<td>16</td>
</tr>
<tr>
<td>equations</td>
<td>34</td>
</tr>
<tr>
<td>helium</td>
<td>41</td>
</tr>
<tr>
<td>leak channel</td>
<td>285</td>
</tr>
<tr>
<td>molecular</td>
<td>26, 61</td>
</tr>
<tr>
<td>orifice</td>
<td>40</td>
</tr>
<tr>
<td>rectangular orifice</td>
<td>29</td>
</tr>
<tr>
<td>transitional range</td>
<td>26</td>
</tr>
<tr>
<td>viscous</td>
<td>61, 66</td>
</tr>
<tr>
<td>Conduction</td>
<td></td>
</tr>
<tr>
<td>molecular</td>
<td>20</td>
</tr>
<tr>
<td>Constant diffusion</td>
<td>343, 345</td>
</tr>
<tr>
<td>permeation</td>
<td>345</td>
</tr>
<tr>
<td>time</td>
<td>344</td>
</tr>
<tr>
<td>Contaminant</td>
<td>137, 139</td>
</tr>
<tr>
<td>sodium</td>
<td>138</td>
</tr>
<tr>
<td>Conversion relationship</td>
<td>53</td>
</tr>
<tr>
<td>Correlation standard</td>
<td>255</td>
</tr>
<tr>
<td>Corrosion</td>
<td>135, 136, 138</td>
</tr>
<tr>
<td>contaminant</td>
<td>136</td>
</tr>
<tr>
<td>mechanism</td>
<td>136</td>
</tr>
<tr>
<td>negative ion</td>
<td>136</td>
</tr>
<tr>
<td>non-aqueous</td>
<td>137</td>
</tr>
<tr>
<td>positive ion</td>
<td>137</td>
</tr>
<tr>
<td>sodium</td>
<td>138</td>
</tr>
<tr>
<td>Cover-header interface</td>
<td>256</td>
</tr>
<tr>
<td>Cubical coefficient of expansion</td>
<td>4</td>
</tr>
<tr>
<td>Cylinder</td>
<td>16, 18</td>
</tr>
<tr>
<td>Cylindrical channel</td>
<td>279</td>
</tr>
<tr>
<td>Cylindrical leak channel</td>
<td>279, 285, 313, 317, 319, 320, 321, 330</td>
</tr>
<tr>
<td>Czandema, A. W.</td>
<td>151</td>
</tr>
<tr>
<td>Decade scale</td>
<td>249</td>
</tr>
<tr>
<td>Defects</td>
<td>333</td>
</tr>
</tbody>
</table>
Deflection 13, 295, 296, 300
as function of package geometry 296
equation 13
minimum 304
time to detect 304
Deflection of a lid 298, 300, 301
Density 2
Depletion rate 247
Desiccator 160
Desorption 250
helium 252
hydrogen 158
Detectability 34
Detector 250
Detector liquid 277, 288, 311, 312, 321, 324, 329, 371
 atmospheres 371
calculating 311
forced into package 275, 282, 295, 318
leak rate 320
quantity 312, 314
volume 371
weight 273
Diffusion 334
 of gas 333, 334
Diffusion rate criteria 333
 through solid 333
Display system 245
Domingos, H. 136
Drift 246, 248, 250, 251
 background 252
Dwell time 197
Dye penetrant 309

Effective viscous leak rate 287
Elastomers 340
Electrical current 16
Electrolytic vehicle 137
Electronic division 257
Electronic packages 341
Empty package 152
Encapsulated part 152
Enclosure, electronic 173
End correction 18, 270
End effect 17, 37, 44
Epoxy 151, 152, 373
 amine type film 373
 conductive 373
 conductive paste 373
 film 373
 insulative 373
 insulative paste 373
Equilibrium 137
Equilibrium time 93
Equivalent standard leak rate 198, 217, 224
 air 197, 203, 204, 215, 223
Error 257
 standard leak 248
Examination
visual 22
External standard 266, 268

Failure
electrical 136
Failure analysis 256
Failure analysis investigation 269
Failure rate 139
False peak 250
Fancher, D. R. 151
Feedthroughs 253, 345
Feliciano-Welpe, D. 157
Fine leak 336
dual value range 204
 rate 347
screened 320
Fine leak test failure 242
 failure criteria 291, 298
 procedure 298
Fine leaks 25
Fixed method compared with flexible 206
 limits 200
Flexible method
 compared to fixed, example 209
 limits 200
Flow
gas 48
 molecular 49, 59, 64
 transitional 49
 viscous 49, 59, 66, 69
Flow of gases
criteria 35
Flow rate measured 54
 molecular 68
 viscous 68
Fluorocarbon 312, 329, 330, 371
 in RGA 310
 vapors exiting package 291
 varies with volume 314
Fluorocarbon gases 287, 309
 molecular ratio 309
 pressure difference 288
Fluorocarbon leak rate 292
 compared to volume 292
Fluorocarbon peaks 309
Forcing liquid into a package 269
Free energy 157

Gas exchange 82
 exiting package 285
Kinetic Theory of 1
 leaking from package 359
 measured by RGA 354
 properties 1
Gas composition change over time 96, 97
Gas flow 83, 88
diffusive 2
 molecular 2
transitional 2, 3
helium 115, 188, 198, 366
limit 196, 212, 252
maximum 206, 367
measured 51, 55, 67, 70, 160
measured helium 252
minimum theoretical 363
oxygen 369
package 269
quantitative 215
relationship 52
standard 51
total 67
ture 51, 56, 70
water 166, 188
Leak test 66, 70, 121, 211, 215, 261
helium 59
Leak testing 19, 69, 97
Leaks
fine 22
Leiby, C. C., and Chen, C. L. 352
Licari, J. J. 135
Life test 135, 154
Liquid detection 269
Liquid forced into package 279, 324, 371
Liquid injection 272
Loschmidt’s number 4
Mariotte 3
Mass spectrometer 245, 353
features 353
inlet port 353
quadrupole 353
Mathematical relationships 4
MCM 12, 73, 74, 135, 151, 160, 162, 164, 166, 167,
171, 173, 186, 235, 238, 243, 266, 267, 323, 379
MDL 254, 255, 262, 263
Mean free path 2, 61, 272
Measured flow rate viscous 271
Measured leak rate 74, 75, 78, 97, 102, 104, 112,
115, 117, 122, 130, 132, 167, 171, 173, 188,
197, 203, 207, 208, 209, 215, 217, 219, 243,
253, 266
helium 63, 93, 102, 106, 172, 186, 188, 206
versus equivalent standard leak rate 201, 202, 203
vs true leak rate 97
Measured leak rate limit, helium 203, 225
Measured leak value 363
Measured value 71
Measurement error 248, 257
Measurement repeatability 248
Mechanical stress 256
Mechanics
Newtonian 1
quantum 2
statistical 2
Methanol 373
Method 1014 196, 197, 206, 215, 292, 296
failure criteria 298
pass/fail limit 292
Method 1018 354
Mfp 2, 272, 273
Microcircuit 135
Microwave hybrid 222, 242
MIL-PRF-38534 qualification 212
Military screening requirement 217
Miller, C. F., and Shepard, R. W. 352
Minimum detectable leak 246, 254, 262
Minimum detectable signal 246, 254
Minimum leak rate
helium 31
Moisture level, hybrids 151
Moisture sensor chips 151
Molar volume 10 Mole 138
Molecular collisions 2
Molecular conductance 23, 24
cylinder 25, 39, 43
equation 23, 28
nitrogen 38
rectangular tube 25
Molecular conduction 275
cylinder 39
Molecular contribution 68
Molecular flow 16, 83, 88, 92, 110, 111, 124, 125,
126, 197, 286, 287
correction factors 33
equation 23
helium 62
Molecular fraction 89
Molecular leak rate 110
helium 43, 275
Molecular motion 2, 3
Molecular species properties 20
Molecular true leak rate, helium 275
Molecular weight 138
Molecule
velocity 6
Monolayer 164
liquid water 188
water 139, 140, 141, 142, 143, 144, 145, 212, 213
Multi-Chip Module 12, 135
National Institute of Standards and Technology 246
Newton 1
NIST 246
Nitrogen, quantity entering enclosure 336
Noise in leak detector 246, 248, 250
Norton, F. J. 352
Optical gross leak test 315
Optical interferometer 298
Optical leak test 295, 323
failure criteria 296
Orifice
conductance 16, 21
Outgassing 151, 152, 155, 156, 359
hydrogen 157
organic material 151, 374
water 141, 151
Oxygen
leaking into a package 367

Package
deflection 296
design fault 256
kovar plug-in 253
liquids entering 270
pinless 255
Partial pressure 51, 54, 69, 72, 82, 83, 84, 85, 86, 87, 89, 104, 106, 132, 340, 343, 358
difference 198
helium 71
water 143, 147
Particle Impact Noise Detection 139
Paulson and Kirk 139
Penetrant dye test 309, 315
Percent viscous flow 62, 63, 65, 211, 233, 328
Permeability 334
for gas-solid combinations 335
Permeation 246, 339
as a leak rate 339
constant 345
definition 333
effect of temperature 337
equation 335, 343
literature 341
phases 333
process 333
temperature effect 337
units 339
pH 137
PIND 139
Plasma processing 139
Plastic package changes in a water environment 343
Tencer model 343
Plastics 342
Plating 152, 154
Poise 271
Porosity 251
Porous glass 266
Porous glass seal
effect on leak rate 251
Pressure 15, 16, 19, 49, 110, 129, 199, 295, 322
difference 291
helium 75
Pressure difference 94
Pressure rise 131
Psi 13
Pumping speed 255

Qualifying headers from RGA 152
R.H. 143
Ratio 140
control method 215
oxygen to argon 357, 358, 360, 372, 379

surface to volume 152
True Helium Leak Rate to Volume 95
ture leak rate to volume 57
Rectangular channel 32, 321
Rectangular cross-section 19
Rectangular duct 18
Rectangular leak channel 279
Redhead, Hobson, and Kornelson 334, 352
Reference pressure 51
Relative humidity 143
Repeatability error 268
Resealing 242
Residual Gas Analysis 2, 34, 115, 135, 309, 353
Residual helium background 246
Resonator 348
Rewelding 242
data use 357
discrepancy explanation 373
interpretation 365
percentage 359
pinless package 365
test 212
test purpose 354
Roark, R. J. 298, 299
Roark’s equation 12
Roberts, S. C. 151
Rome Air Development Center Report 199

Scale change 248
Scales 257
Schuessler, P. 157
Seal
hermetic 251
metal 251
porous glass 251
Sealer 366
Sealing 156
process 256
Sealing chamber 372
atmosphere 365
integrity test 356
verification 356
Sealing time 84
Semilog graph 140
Sensitivity 246, 248
Slip 17, 37
correction 270
plane 333
Slip correction 18
Small package problems 374
qualification 374
Smallest theoretical leak 28
Solid, property 334
Solubility 334, 342, 343
gas in metal 342
relation to temperature and water vapor 342
water vapor in plastics 342
Solvent
halogenated organic 137
Square package, calculation 299
Square welded package 299
Standard leak 246, 247, 257, 259
correlation 250
connection 250
Standard leak rate 201, 202, 203
Standards
use of 248, 249, 257
Stress
mechanical 375
thermal 375
Stroehle, D. 139
Surface area 140

TCMXO 130
Temperature Controlled Miniature Crystal Oscillator
130
Temperature, effect on permeation 337
Temperature factor 49
Tencer, M. 352
Test
fixed method 196, 199, 226, 238
flexible method 196, 206
mechanical 376
thermal 376
Theoretical Minimum Leak Rates 29
Thermal stress 115
Throughput 83, 85
Total leak rate 110
Total pressure 88, 89, 95, 98, 117, 120, 124, 125, 132
Tracer gas 197
Transitional range 44
Transitional region 26
True helium leak rate 97, 98, 102, 103, 105, 106, 108,
109, 116, 121, 122, 130, 132, 133
acceptance limit 73
True leak rate 85, 86, 87, 97, 102, 366, 367
air 198
argon 363, 378
helium 63, 67, 70, 72, 102, 146, 152, 172, 215, 252,
266, 277, 313, 319, 330, 359, 360, 361, 363,
367, 370, 372, 375, 376, 377, 378, 381
limit 222
oxygen 70, 116, 166, 362, 378
water 143, 147, 150, 151, 156, 157, 160, 164
True molecular leak rate 233, 286
helium 76
True rate 86
True total leak rate helium 78
True viscous leak rate 89, 92
helium 92, 286
Tuning
helium peak 250

Vacuum technology 28
Valve 39
Vapor detection test 291, 315, 329
Velocity 6, 7
Maxwellian 8
Viscosity 61, 66, 68, 272, 322, 328
coefficient of 66
gases 271
helium 271
liquids 271
Viscosity coefficient 49
Viscous conductance 26, 35, 270, 279, 317, 324
detector liquid 281
helium 274, 321
liquids 271
rectangular channel 35
Viscous conduction 17, 49
Viscous contribution 68, 69, 210
Viscous flow 9, 16, 18, 19, 89, 90, 92, 98, 108, 109,
110, 111, 122, 123, 124, 125, 127, 129, 132,
286
equation 17
helium 62
percent 119, 120, 123
true or standard rate 271
Viscous flow rate 109, 120
Viscous gases 271
Viscous leak rate 119, 120, 125, 129, 233, 317
helium 326
Volume 21, 87, 95, 285
liquid water 165
Water 136
in packages 143, 156
in plating 152
ingress 144, 147, 151
ionization constant 137
ions 137
leak into package 357
leaving plastic 342
origin 141
vapor 141
Water vapor into plastic package 342
Water vapor pressure 143
Weight gain 321, 326, 342
failure criteria 295
test 295, 315
Zero of leak detector 246, 248